Publications
Select Publications
Click image of any of the manuscript pages to go to journal website. Most recent listed first.
Peer-Reviewed
Mathew D, Marmarelis ME, Foley C, Bauml JM, Ye D, Ghinnagow R, Ngiow SF, Klapholz M, Jun S, Zhang Z, Zorc R, Davis CW, Diehn M, Giles JR, Huang AC, Hwang WT, Zhang NR, Schoenfeld AJ, Langer CJ, Wherry EJ, Minn AJ. Combined JAK Inhibition and PD-1 Immunotherapy for Non Small Cell Lung Cancer Patients. Science. 2024 Jun;384(6702):eadf1329. https:://10.1126/science.adf1329
Memon D, Schoenfeld AJ, Ye D, Fromm G, Rizvi H, Zhang X, Keddar MR, Mathew D, Yoo KJ, Qiu J, Lihm J, Miriyala J, Sauter JL, Luo J, Chow A, Bhanot UK, McCarthy C, Vanderbilt CM, Liu C, Abu-Akeel M, Plodkowski AJ, McGranahan N, Łuksza M, Greenbaum BD, Merghoub T, Achour I, Barrett JC, Stewart R, Beltrao P, Schreiber TH, Minn AJ, Miller ML, Hellmann MD. Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lung cancer. Cancer Cell. 2024 Feb 12;42(2):209-224.e9. https://doi.org/10.1016/j.ccell.2023.12.013
Qiu J, Xu B, Ye D, Ren D, Wang S, Benci JL, Xu Y, Ishwaran H, Beltra JC, Wherry EJ, Shi J, Minn AJ. Cancer cells resistant to immune checkpoint blockade acquire interferon-associated epigenetic memory to sustain T cell dysfunction. Nat Cancer. 2023 Jan;4(1):43-61. https://doi.org/10.1038/s43018-022-00490-y
Cucolo, L., Chen, Q., Qiu, J., Yu, Y., Klapholz, M., Budinich, K.A., et al. (2022). The interferon-stimulated gene RIPK1 regulates cancer cell intrinsci and extrinsic resistance to immune checkpoint blockade, Immunity, 55:671–685. https://doi.org/10.1016/j.immuni.2022.03.007
Johnson, L. R., Lee, D. Y., Eacret, J. S., Ye D., June, C. H., and Minn, A. J. (2021). The Immunostimulatory RNA RN7SL1 Enables CAR-T Cells to Enhance Autonomous and Endogenous Immune Function. Cell, Sep 16;184(19):4981-4995.e14. https://doi.org/10.1016/j.cell.2021.08.004
Benci, J. L., Johnson, L. R., Choa, R., Xu, Y., Qiu, J., Zhou, Z., et al. (2019). Opposing Functions of Interferon Coordinate Adaptive and Innate Immune Responses to Cancer Immune Checkpoint Blockade. Cell, 178(4), 933–948.e14. http://doi.org/10.1016/j.cell.2019.07.019
Patel, S. A., & Minn, A. J. (2018). Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity, 48(3), 417–433. http://doi.org/10.1016/j.immuni.2018.03.007
Harding, S. M., Benci, J. L., Irianto, J., Discher, D. E., Minn, A. J., & Greenberg, R. A. (2017). Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature, 548(7668), 466–470. http://doi.org/10.1038/nature23470
Nabet, B. Y., Qiu, Y., Shabason, J. E., Wu, T. J., Yoon, T., Kim, B. C., et al. (2017). Exosome RNA Unshielding Couples Stromal Activation to Pattern Recognition Receptor Signaling in Cancer. Cell, 170(2), 352–366.e13. http://doi.org/10.1016/j.cell.2017.06.031
Benci, J. L., Xu, B., Qiu, Y., Wu, T. J., Dada, H., Twyman-Saint Victor, C., et al. (2016). Tumor Interferon Signaling Regulates a Multigenic Resistance Program to Immune Checkpoint Blockade. Cell, 167(6), 1540–1554.e12. http://doi.org/10.1016/j.cell.2016.11.022
Twyman-Saint Victor, C., Rech, A. J., Maity, A., Rengan, R., Pauken, K. E., Stelekati, E., et al. (2015). Radiation and dual checkpoint blockade activate non-redundant immune mechanisms in cancer. Nature, 520(7547), 373–377. http://doi.org/10.1038/nature14292
Boelens, M. C., Wu, T. J., Nabet, B. Y., Xu, B., Qiu, Y., Yoon, T., et al. (2014). Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell, 159(3), 499–513. http://doi.org/10.1016/j.cell.2014.09.051
Weichselbaum, R. R., Ishwaran, H., Yoon, T., Nuyten, D. S. A., Baker, S. W., Khodarev, N., et al. (2008). An interferon-related gene signature for DNA damage resistance is a predictive marker for chemotherapy and radiation for breast cancer. PNAS, 105(47), 18490–18495. http://doi.org/10.1073/pnas.0809242105
PRE-PRINTS
Dhuey, E., Oldridge, O., Ravishankar, R., Dada, H., Yu, Y., Anderson, M.S., and Minn, A.J. (2022). Therapeutic interruption of T cell development generates high-affinity T cells that escape exhaustion and improve cancer immunotherapy. bioRxiv. https://doi.org/10.1101/2022.01.19.476935
Qiu J, Ye D, Chen XE, Dangle N, Yoshor B, Zhang T, Shao Y, Nallamala VC, Wang S, Ren D, Xu Y, Chen J, Zhang NR, Shi J, Greenberg RA, and Minn AJ (2024). Targeting Interferon-Driven Inflammatory Memory Prevents Epigenetic Evolution of Cancer Immunotherapy Resistance. bioRxiv. https://doi.org/10.1101/2024.08.13.607862